

PRECISION COMPOSITE OPTICAL ELEMENTS

PAUL B. WILLIS

JET PROPULS ION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

4800 Oak Grove Drive, Pasadena, CA 91109

(818) 354-6998 paul.b.willis@jpl.nasa.gov

JPL

MLS MISSION (MICROWAVE LIMB SOUNDER)

- SATELLITE:
 FUNDED BY GODDARD; PART OF THE EARTH
 OBSERVING SYSTEMS (EOS) "CHEM" PLATFORM, BUILT
 BY TRW, FOR LAUNCH IN 2002. SUCCESSOR TO THE
 UPPER ATMOSPHERE REASEARCH SATELITE (UARS)
- SCIENCE GOALS:
 ACQUIRE AND ANALYZE MICROWAVE SIGNALS FROM
 EARTH'S ATOMSPHERE. DETERMINE: (a) IS THE OZONE
 HOLE RECOVERING, (b) HOW DO KEY GASSES MIX, AND,
 (c) DETECT CHANGES IN OVERALL CLIMATE OF THE
 EARTH
- MEASUREMENTS:
 MICROWAVES EMITED BY WATER VAPOR, OZONE,
 CHLORINE OXIDES, NITROGEN OXIDES AND OTHER KEY
 GASSES

MLS INSTRUMENT

- MODULES: GIGAHERTZ, TERAHERTZ (WATER), & SPECTROMETER
- GIGAHERTZ MODULE:
 CONSISTS OF ANTENNA AND RADIOMETER. THE
 ANTENNA IS A THREE REFLECTOR CLEAR-APERTURE
 OFFSET CASSEGRAIN SYSTEM THAT COLLECTS AND
 FOCUSES MICROWAVE RADIATION INTO THE
 RADIOMETER FOR ANALYSIS
- RADIOMETER: DIRECTS THE SIGNALS TO DETECTORS CENTERED AT 118, 190, 240 AND 640 GHz; GENERATES INTERMEDIATE FREQUENCIES, AMPLIFY, DOWN-CONVERT, ANALYZE, SEND TO TELEMETRY
- SHORTEST WAVELENGTH (640 GHz) IS 470 MICRONS

MLS INSTRUMENT

MLS PRIMARY REFLECTOR REQUIREMENTS

PRIMARY REFLECTOR IS THE HEART OF THE MICROWAVE COLLECTION SYSTEM

• DIMENSIONS: ELIPTICAL, 1.6 x 0.8 METERS

SURFACE AREA: 1.005 SQUARE METERS

• MASS LIMIT: 10 Kg (Maximum)

- **CONSTRUCTION: COMPOSITE FACESHEETS** (REPRODUCED OFF CARBON MOLD) WITH ADHESIVELY BONDED COMPOSITE RIB STRUCTURE (COMPOSITE **OPTICS, INC.)**
- MATERIAL: COMPOSITE HIGH MODULUS GRAPHITE FIBER (M55J) WITH CYANATE ESTER RESIN (954-3), 350°F CURE
- FIGURE ACCURACY REQUIRED: 8.5 MICRONS, RMS (LAMBDA OVER FIFTY)

MLS PRIMARY REFLECTOR MOLD AND CORE ASSEMBLY

MLS PRIMARY REFLECTOR

MLS PRIMARY REFLECTOR REQUIREMENTS

- RF PERFORMANCE: REFLECTIVE FROM 118 TO 640 GHz, REQUIRES COATING WITH 1.2 MICRONS OF VAPOR DEPOSITED ALUMINUM ("VDA", FIVE SKIN DEPTHS) (SURFACE OPTICS CORP.)
- SPECULARITY: SOLAR, <10% AT 10° ANGLE OF CONE, TO PREVENT THERMAL LOADING OF SECONDARY AND OTHER REFLECTORS. ACCOMPLISHED BY PRECISION GRIT BLASTING OF THE SURFACE UNDER CNC CONTROL
- THERMAL BALANCE REQUIREMENTS: ABSORPTANCE = < 0.40 ABSORPTANCE/EMITTANCE 1.0 < α /ε < 2.0
- EMISSIVITY: ACHIEVED BY DEPOSITING AN 0.8 MICRON LAYER OF REACTIVELY FORMED SILICON SUBOXIDE (SiOx) (SURFACE OPTICS CORP.)

MLS PRIMARY REFLECTOR FIGURE MEASUREMENTS

- COORDINATE MEASUREMENT MACHINE: BROWN &
 SHARP VALIDATOR 7236, PC-DMIS SOFTWARE, NEW
 ROTARY ENCODERS, OPERATED BY COMPOSITE OPTICS,
 INC.
- STATISTICAL ACCURACY: ESTIMATED AT 2.5 MICRONS OVER ENTIRE REFLECTOR AREA
- NUMBER OF POINTS: 1270
- NUMBER OF SCANS: THREE PER MEASUREMENT
- FINAL FIGURE: ROOT-SUM-SQUARE OF THE THREE RMS VALUES

JPL

MLS PRIMARY REFLECTOR TYPICAL CMM FIGURE MEASUREMENT

10

JPL

MLS PRIMARY REFLECTOR FIGURE MEASUREMENTS

FIGURE MEASUREMENT SUMMARY:

FOLLOWING VDA COATING

AS FABRICATED

AFTER THERMAL CYCLING

(10 Cycles, -85°C to +90°C)

THERMAL VACUUM/ACOUSTIC

(72 Hrs/+90°C, 143 dB 30 Hz to 10 KHz)

FOLLOWING GRIT BLASTING

4.50 MICRONS, RMS

4.39 MICRONS, RMS

4.45 MICRONS, RMS

• PRIMARY REFLECTOR FIGURE APPEARS TO BE STABLE TO ALL PROCESSING CONDITIONS WITHIN THE ACCURACY OF THE CMM MACHINE

• MAJOR ERROR FEATURES ALSO MAP TO MOLD SURFACE. MOLD APPEARS TO BE THE LARGEST SOURCE OF ERROR

4.37 MICRONS, RMS

MLS PRIMARY REFLECTOR PERFORMANCE SUMMARY

•	PROPERTY	REQUIREMENT	ACTUAL
	MASS	10 Kg	8.6 Kg
	AREAL DENSITY	$< 10 \text{ Kg/m}^2$	8.5 Kg/ m^2
	STIFFNESS	80 Hz	288 Hz
	FIGURE	8.5 Microns, rms	4.37 Microns, rms
	ABSORPTANCE	=< 0.40	0.43
	α/ε RATIO	$1.0 < \alpha / \epsilon < 2.0$	1.30
	SPECULARITY	<10% (10°angle)	7% (10°angle)

• CONCLUSIONS: VERY LARGE, HIGHLY ACCURATE AND LOW MASS REFLECTORS CAN BE FABRICATED USING COMPOSITES TECHNOLOGY

COMPOSITE REFLECTORS FUTURE TRENDS

- FIGURE OF MERIT:
 APERTURE (m²) / MASS (Kg) * FIGURE(μ rms) = TWICE THE
 VALUE OF THE NEW 8.1 m GEMINI REFLECTOR (HAWAII)
- FIGURE ACCURACY:
 ONE ORDER OF MAGNITUDE IMPROVEMENT REQUIRED
 FOR INFRARED PERFORMANCE (λ /10); TWO ORDERS OF
 MAGNITUDE IMPROVEMENT REQUIRED FOR VISIBLE
- ERROR CORRECTION POSSIBILITIES:
 IMPROVED MOLD SURFACES, MECHANICAL POLISHING,
 ION-BEAM FIGURING, EXCIMER LASER MACHINING,
 VAPOR DEPOSITION SMOOTHING; CORRECTIONS AT
 THE SECONDARY REFLECTOR
- LARGE COMPOSITE REFLECTORS MAY EVENTUALLY (?) OPERATE IN THE VISIBLE REGIONS